Home   FAQs   New Arrivals   Specials   Pricing & Shipping   Location   Corporate Services   Why Choose Bookware?  
 Search:   
Call our store: 9955 5567 (from within Sydney) or 1800 734 567 (from outside Sydney)
 View Cart   Check Out   
 
Browse by Subject
 TAFE Accounting
 TAFE I.T./Computing
 TAFE - Other
I.T
 .NET
 Windows 8
 Adobe CS6
 Cisco
 CCNA 2012
 CCNP 2012
 Java
 VB
 ASP
 Web Design
 E-Commerce
 Project Management
 ITIL
 Macintosh
 Mobile Devices
 Linux
 Windows Server 2012
 SQL Server 2012
 SAP
Certification
 MCITP
 MCTS
Economics and Business
 Accounting
 Business Information Systems
 Economics
 Finance
 Management
 Marketing
 TAX
 Human Resources
Academic
 Law
 Nursing
 Medical
 Psychology
 Engineering

Finite Mathematics and Applied Calculus, 7th Edition

by: Stefan Waner | Steven Costenoble

Notify me when in stock

On-line Price: $157.95 (includes GST)

package 0

17%Off Retail Price

You save: $32.00

Usually ships within 3-4 business days.

Retail Price: $189.95

Publisher: Cengage Learning,27.01.17

Category: MATHEMATICS Level:

ISBN: 1337274208
ISBN13: 9781337274203

Add to Shopping Cart

Waner and Costenoble's FINITE MATHEMATICS AND APPLIED CALCULUS, Seventh Edition, helps your students see the relevance of mathematics in their lives. A large number of the applications are based on real, referenced data from business, economics, and the life and social sciences. Spreadsheet and TI Graphing Calculator instruction appears throughout the text, supplemented by the WebAssign course, and an acclaimed author website. The end-of-chapter Technology Notes and Technology Guides are optional, allowing you to include in your course precisely the amount of technology instruction you choose. Praised for its accuracy and readability, FINITE MATHEMATICS AND APPLIED CALCULUS is perfect for all types of teaching and learning styles and support.

Table of Contents
0. PRECALCULUS REVIEW.
Real Numbers. Exponents and Radicals. Multiplying and Factoring Algebraic Equations. Rational Expressions. Solving Polynomial Equations. Solving Miscellaneous Equations. The Coordinate Plane. Logarithms.
1. FUNCTIONS AND APPLICATIONS.
Functions from the Numerical, Algebraic, and Graphical Viewpoints. Functions and Models. Linear Functions and Models. Linear Regression.
2. NONLINEAR FUNCTIONS AND MODELS.
Quadratic Functions and Models. Exponential Functions and Models. Logarithmic Functions and Models. Logistic Functions and Models.
3. THE MATHEMATICS OF FINANCE.
Simple Interest. Compound Interest. Annuities, Loans, and Bonds.
4. SYSTEMS OF LINEAR EQUATIONS AND MATRICES.
Systems of Two Equations in Two Unknowns. Using Matrices to Solve Systems of Equations. Applications of Systems of Linear Equations.
5. MATRIX ALGEBRA AND APPLICATIONS.
Matrix Addition and Scalar Multiplication. Matrix Multiplication. Matrix Inversion. Game Theory. Input-Output Models.
6. LINEAR PROGRAMMING.
Graphing Linear Inequalities. Solving Linear Programming Problems Graphically. The Simplex Method: Solving Standard Maximization Problems. The Simplex Method: Solving General Linear Programming Problems. The Simplex Method and Duality.
7. SETS AND COUNTING.
Sets and Set Operations. Cardinality. The Addition and Multiplication Principles. Permutations and Combinations.
8. PROBABILITY.
Sample Spaces and Events. Relative Frequency. Probability and Probability Models. Probability and Counting Techniques. Conditional Probability and Independence. Bayes' Theorem and Applications. Markov Systems.
9. RANDOM VARIABLES AND STATISTICS.
Random Variables and Distributions. Bernoulli Trials and Binomial Random Variables. Measures of Central Tendency. Measures of Dispersion. Normal Distributions.
10. INTRODUCTION TO THE DERIVATIVE.
Limits: Numerical and Graphical Approaches. Limits and Continuity. Limits: Algebraic Approach. Average Rate of Change. Derivatives: Numerical and Graphical Viewpoints. Derivatives: Algebraic Viewpoint.
11. TECHNIQUES OF DIFFERENTIATION.
Derivatives of Powers, Sums, and Constant Multiples. A First Application: Marginal Analysis. The Product and Quotient Rules. The Chain Rule. Derivatives of Logarithmic and Exponential Functions. Implicit Differentiation.
12. APPLICATIONS OF THE DERIVATIVE.
Maxima and Minima. Applications of Maxima and Minima. Higher Order Derivatives: Acceleration and Concavity. Analyzing Graphs. Related Rates. Elasticity.
13. THE INTEGRAL.
The Indefinite Integral. Substitution. The Definite Integral: Numerical and Graphical Approaches. The Definite Integral: Algebraic Approach and the Fundamental Theorem of Calculus.
14. FURTHER INTEGRATION TECHNIQUES AND APPLICATIONS OF THE INTEGRAL.
Integration by Parts. Area Between Two Curves and Applications. Averages and Moving Averages. Applications to Business and Economics: Consumers' and Producers' Surplus and Continuous Income Streams. Improper Integrals and Applications. Differential Equations and Applications.
15. FUNCTIONS OF SEVERAL VARIABLES.
Functions of Several Variables from the Numerical, Algebraic, and Graphical Viewpoints. Partial Derivatives. Maxima and Minima. Constrained Maxima and Minima and Applications. Double Integrals and Applications.
16. TRIGONOMETRIC MODELS.
Trigonometric Functions, Models, and Regression. Derivatives of Trigonometric Functions and Applications. Integrals of Trigonometric Functions and Applications.